Influence of the morphology of core-shell supports on the immobilization of lipase B from Candida antarctica.

نویسندگان

  • Martina C C Pinto
  • Denise M G Freire
  • José Carlos Pinto
چکیده

Core-shell polymer particles with different properties were produced through combined suspension-emulsion polymerizations and employed as supports for immobilization of lipase B from Candida antarctica. In order to evaluate how the morphology of the particles affects the immobilization parameters, empirical models were developed to describe the performance of the biocatalysts as a function of the specific area, volume of pores and average pore diameter of the supports. It was observed that the average pore sizes did not affect the enzymatic activities in the analyzed range of pore sizes. It was also observed that the increase of the specific area (and of the volume of pores) led to higher enzyme loadings, also leading to an increase in the esterification activity, as expected. However, when the specific area (and volume of pores) increased, the hydrolytic activity and the retention of hydrolytic activity of the biocatalysts decreased, indicating the existence of diffusional limitations for some hydrolytic reactions, probably because of the high reaction rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Candida rugosa lipase immobilization parameters on magnetic silica aerogel using adsorption method

Magnetic silica aerogel in hydrophobic and hydrophilic forms were used as support to immobilize Candida rugosa lipase by adsorption method. Response surface methodology (RSM) was employed to study the effects of the three most important immobilization parameters, namely enzyme/support ratio (0.3-0.5, w/w), immobilization time (60-120 min) and alcohol percentage (20-40, %v/v) on the specific act...

متن کامل

Investigation of Enzyme Immobilization Effects on its Characteristics

Background; Enzymes are well known as sensitive catalysts in the laboratory and industrial scale. To improve their properties and for using their significant potential in various reactions as a useful catalyst the stability of enzymes can often require improvement. Enzymes Immobilization on solid supports such as epoxy- functionalized ferric silica nanocomposite can be effective way to improve ...

متن کامل

Intermediate Production of Mono- and Diolein by an Immobilized Lipase from Candida antarctica

Lipase from Candida antarctica, fixed on macroporous acrylic resin, has been used for the intermediate production of mono- and diolein by hydrolysis of triolein. The effect of altering concentrations of triolein and glycerol and the function of the molecular sieve on the hydrolysis reaction of triolein were investigated. The highest hydrolysis yield was observed for the utmost concentration of ...

متن کامل

Immobilization of Candida antarctica lipase B on Polystyrene Nanoparticles.

Polystyrene (PS) nanoparticles were prepared via a nanoprecipitation process. The influence of the pH of the buffer solution used during the immobilization process on the loading of Candida antarctica lipase B (Cal-B) and on the hydrolytic activity (hydrolysis of p-nitrophenyl acetate) of the immobilized Cal-B was studied. The pH of the buffer solution has no influence on enzyme loading, while ...

متن کامل

Nanoclays for Lipase Immobilization: Biocatalyst Characterization and Activity in Polyester Synthesis

The immobilization of Candida antarctica lipase B (CALB) was performed by physical adsorption on both neat and organo-modified forms of sepiolite and montmorillonite. The influence of different parameters, e.g., solvent, enzyme loading, cross-linking, and type of clay support, on immobilization efficiency and catalyst hydrolytic activity has been investigated. The highest hydrolytic activities ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2014